Interactions between Zinc and Allosteric Modulators of the Glycine Receptor.
نویسندگان
چکیده
The glycine receptor is a pentameric ligand-gated ion channel that is involved in fast inhibitory neurotransmission in the central nervous system. Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nanomolar to low-micromolar concentrations and inhibiting its effects at higher concentrations. Low-nanomolar concentrations of contaminating zinc in electrophysiological buffers are capable of synergistically enhancing receptor modulation by other compounds, such as ethanol. This suggests that, unless accounted for, previous studies of glycine receptor modulation were measuring the effects of modulator plus comodulation by zinc on receptor function. Since zinc is present in vivo at a variety of concentrations, it will influence glycine receptor modulation by other pharmacologic agents. We investigated the utility of previously described "zinc-enhancement-insensitive" α1 glycine receptor mutants D80A, D80G, and W170S to probe for interactions between zinc and other allosteric modulators at the glycine receptor. We found that only the W170S mutation conferred complete abolishment of zinc enhancement across a variety of agonist and zinc concentrations. Using α1 W170S receptors, we established that, in addition to ethanol, zinc interacts with inhalants, but not volatile anesthetics, to synergistically enhance channel function. Additionally, we determined that this interaction is abolished at higher zinc concentrations when receptor-enhancing binding sites are saturated, suggesting a mechanism by which modulators such as ethanol and inhalants are capable of increasing receptor affinity for zinc, in addition to enhancing channel function on their own.
منابع مشابه
Zinc Interactions with Allosteric Modulators at the Glycine Receptor APPROVED BY SUPERVISING COMMITTEE:
متن کامل
Identification of novel specific allosteric modulators of the glycine receptor using phage display.
The glycine receptor (GlyR) is a member of the Cys-loop superfamily of ligand-gated ion channels and the major mediator of inhibitory neurotransmission in the spinal cord and brainstem. Many allosteric modulators affect the functioning of members of this superfamily, with some such as benzodiazepines showing great specificity and others such as zinc, alcohols, and volatile anesthetics acting on...
متن کاملThe Structural Mechanism of Allosteric Modulation of the NMDA Receptor: A Balance of Tensions
Rita Evelyn Sirrieh, B.S. Advisory Professor: Vasanthi Jayaraman, Ph.D. N-methyl-D-aspartate (NMDA) receptors are one of the three main types of ionotropic glutamate receptors in the central nervous system. NMDA receptors mediate the rapid excitatory neurotransmission that underlies learning and memory formation. Conversely, NMDA receptors are implicated in a variety of neurological disorders. ...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملPositive allosteric modulators differentially affect full versus partial agonist activation of the glycine receptor.
Taurine acts as a partial agonist at the glycine receptor (GlyR) in some brain regions such as the hippocampus, striatum, and nucleus accumbens. Ethanol, volatile anesthetics, and inhaled drugs of abuse are all known positive allosteric modulators of GlyRs, but their effects on taurine-activated GlyRs remain poorly understood, especially their effects on the high concentrations of taurine likel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 361 1 شماره
صفحات -
تاریخ انتشار 2017